On Some Determinantal Inequalities

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some New Results on Determinantal Inequalities and Applications

Some new upper and lower bounds on determinants are presented for diagonally dominant matrices and general H-matrices by using different methods. These bounds are some improvements of results given by Ostrowski 1952 and 1937 , Price 1951 , Wang and Zhang 2002 , Huang and Liu 2005 , and so forth. In addition, these bounds are also used to localize some numerical characters e.g., the minimum eige...

متن کامل

On Some Quiver Determinantal Varieties

We introduce certain quiver analogue of the determinantal variety. We study the Kempf-Lascoux-Weyman’s complex associated to a line bundle on the variety. In the case of generalized Kronecker quivers, we give a sufficient condition on when the complex resolves a maximal Cohen-Macaulay module supported on the quiver determinantal variety. This allows us to find the set-theoretical defining equat...

متن کامل

Determinantal inequalities for positive definite matrices

Let Ai , i = 1, . . . ,m , be positive definite matrices with diagonal blocks A ( j) i , 16 j 6 k , where A ( j) 1 , . . . ,A ( j) m are of the same size for each j . We prove the inequality det( m ∑ i=1 A−1 i ) > det( m ∑ i=1 (A (1) i ) −1) · · ·det( m ∑ i=1 (A (k) i ) −1) and more determinantal inequalities related to positive definite matrices.

متن کامل

Determinantal Inequalities for Block Triangular Matrices

This paper presents some results that complement (2). We believe our results are of new pattern concerning determinantal inequalities. Let us fix some notation. The matrices considered here have entries from the field of complex numbers. X ′,X ,X∗ stand for transpose, (entrywise)conjugate, conjugate transpose of X , respectively. For two n -square Hermitian matrices X ,Y , we write X > Y to mea...

متن کامل

On some matrix inequalities

The arithmetic-geometric mean inequality for singular values due to Bhatia and Kittaneh says that 2sj(AB ∗) ≤ sj(A∗A + B∗B), j = 1, 2, . . . for any matrices A,B. We first give new proofs of this inequality and its equivalent form. Then we use it to prove the following trace inequality: Let A0 be a positive definite matrix and A1, . . . , Ak be positive semidefinite matrices. Then tr k ∑

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1968

ISSN: 0002-9939

DOI: 10.2307/2035552