On Some Determinantal Inequalities
نویسندگان
چکیده
منابع مشابه
Some New Results on Determinantal Inequalities and Applications
Some new upper and lower bounds on determinants are presented for diagonally dominant matrices and general H-matrices by using different methods. These bounds are some improvements of results given by Ostrowski 1952 and 1937 , Price 1951 , Wang and Zhang 2002 , Huang and Liu 2005 , and so forth. In addition, these bounds are also used to localize some numerical characters e.g., the minimum eige...
متن کاملOn Some Quiver Determinantal Varieties
We introduce certain quiver analogue of the determinantal variety. We study the Kempf-Lascoux-Weyman’s complex associated to a line bundle on the variety. In the case of generalized Kronecker quivers, we give a sufficient condition on when the complex resolves a maximal Cohen-Macaulay module supported on the quiver determinantal variety. This allows us to find the set-theoretical defining equat...
متن کاملDeterminantal inequalities for positive definite matrices
Let Ai , i = 1, . . . ,m , be positive definite matrices with diagonal blocks A ( j) i , 16 j 6 k , where A ( j) 1 , . . . ,A ( j) m are of the same size for each j . We prove the inequality det( m ∑ i=1 A−1 i ) > det( m ∑ i=1 (A (1) i ) −1) · · ·det( m ∑ i=1 (A (k) i ) −1) and more determinantal inequalities related to positive definite matrices.
متن کاملDeterminantal Inequalities for Block Triangular Matrices
This paper presents some results that complement (2). We believe our results are of new pattern concerning determinantal inequalities. Let us fix some notation. The matrices considered here have entries from the field of complex numbers. X ′,X ,X∗ stand for transpose, (entrywise)conjugate, conjugate transpose of X , respectively. For two n -square Hermitian matrices X ,Y , we write X > Y to mea...
متن کاملOn some matrix inequalities
The arithmetic-geometric mean inequality for singular values due to Bhatia and Kittaneh says that 2sj(AB ∗) ≤ sj(A∗A + B∗B), j = 1, 2, . . . for any matrices A,B. We first give new proofs of this inequality and its equivalent form. Then we use it to prove the following trace inequality: Let A0 be a positive definite matrix and A1, . . . , Ak be positive semidefinite matrices. Then tr k ∑
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1968
ISSN: 0002-9939
DOI: 10.2307/2035552